Каталог статей

მთავარი » სტატიები » Химия » Химия

Адсорбционные равновесия

Адсорбционные равновесия

 Адсорбционное равновесие в системе "газ – жидкость". Закон Генри. Мономолекулярная адсорбция в системах "газ – жидкость", "жидкость – жидкость", "газ – твердое". Изотерма адсорбции Ленгмюра. Уравнение Фрейндлиха. Теория полимолекулярной адсорбции БЭТ. Уравнение БЭТ

Предположим, что имеются компоненты-неэлектролиты. Будем считать, что адсорбат образует на поверхности адсорбента мономолекулярный слой. Мономолекулярная адсорбция с точки зрения термодинамики процесса выражается химическим потенциалом в адсорбционном слое и объемной фазе:

;

;

,

где - химический потенциал вещества в адсорбционном слое;

 - химический потенциал вещества в объемной фазе.

При равновесии потенциалы равны: .

Преобразуем:

; – адсорбция; аi = c.

,

, где D - коэффициент распределения.

Выражение - константа Генри. Она не зависит от концентрации, определяется при постоянной температуре, A/a=Kг,

А=а×Кг – закон Генри, т.е. при разбавлении системы коэффициент распределения стремится к постоянному значению, равному константе Генри. Если концентрация в сорбционном слое стремится к нулю, то а » с; а = ×с; à 1. Поэтому на практике закон Генри используют в следующем виде: а=Кгсi. Если одна из фаз – газ, то имеем следующий вид: a = КгРi,

Кг = Кг/RT.


Эти уравнения представляют собой уравнения изотермы адсорбции при малых концентрациях. В соответствии с этими уравнениями можно по другому сформулировать закон Генри: величина адсорбции при малых давлениях газа (малых концентрациях вещества в растворе) прямо пропорциональна давлению (концентрации). Эти зависимости показаны на рисунке 2.3.1.1. При адсорбции на твердых телах область действия закона мала из-за неоднородности поверхности, но даже на однородной поверхности при увеличении концентрации обнаруживается отклонение от закона. При малых концентрациях распределенного вещества отклонения обусловлены в основном соотношением между взаимодействием молекул друг с другом и с поверхностью адсорбента. Если когезионные взаимодействия адсорбата больше, то отклонение от закона отрицательно и <1, и коэффициент распределения увеличивается (кривая 1 на рис. 2.3.1.1). Если сильнее взаимодействие "адсорбат – адсорбент", то отклонение положительно и D уменьшается (кривая 2 на рис. 2.3.1.1). При дальнейшем увеличении концентрации происходит уменьшение свободной поверхности, снижается реакционная способность и кривые загибаются к оси абсцисс. Константу Генри получают экстраполяцией коэффициента распределения на нулевую концентрацию. В соответствии с правилом фаз Гиббса в гетерогенных системах равновесные параметры зависят от дисперсности или удельной поверхности. Для адсорбционных систем эта зависимость выражается в уменьшенных концентрациях вещества в объемной фазе с увеличением удельной поверхности адсорбента. Если в такой системе содержание распределяемого вещества постоянно, то

АmSуд + сV = const,

где    m - масса адсорбента;

Sуд- удельная поверхность адсорбента;

V  - объем фазы, из которой извлекается вещество;

const – постоянное количество вещества в системе.

,

  или : разделим второй член на с;

D - коэффициент распределения;

; .

Из соотношения следует, что с увеличением удельной поверхности при постоянной концентрации адсорбата концентрация уменьшается и тем сильнее, чем больше константа Генри и меньше объем фазы.

Теория Ленгмюра позволяет учесть наиболее сильные отклонения от закона Генри, что связано с ограничением адсорбционного объема или поверхности адсорбента. Ограниченность этого параметра приводит к адсорбционному насыщению поверхности адсорбента по мере увеличения концентрации распределяемого вещества. Это положение уточняется следующими утверждениями.

1.                Адсорбция локализована на отдельных адсорбционных центрах, каждый из которых взаимодействует только с одной молекулой адсорбента - образуется мономолекулярный слой.

2.                Адсорбционные центры энергетически эквивалентны - поверхность адсорбента эквипотенциальна.

3.                Адсорбированные молекулы не взаимодействуют друг с другом.

Ленгмюр предположил, что при адсорбции происходит квазихимическая реакция между распределяемым компонентом и адсорбционными центрами поверхности:

,

где А   - адсорбционые центры поверхности;

В   - распределенное вещество;

АВ - образующийся комплекс на поверхности.

Константа равновесия процесса: ,

где    сав = А - величина адсорбции;

са = А0 = А¥  - А,

где А¥ - емкость адсорбционного монослоя или число адсорбционных центров, приходящихся на единицу поверхности или единицу массы адсорбента; А0 - число оставшихся свободных адсорбционных центров, приходящихся на единицу площади или единицу массы адсорбента; св – концентрация распределенного вещества.

Подставляя величину концентрации в уравнение константы, получим выражения

, св = с,

А = А¥Кс – АКс, - для жидкостей;

- для газов.

Эти выражения – уравнения изотермы адсорбции Ленгмюра. К и Кр  в уравнении характеризуют энергию взаимодействия адсорбента с адсорбатом. Адсорбционное уравнение часто представляют относительно степени заполнения поверхности, т.е. как отношение А/А¥:

,

.

Экспериментальные результаты по определению изотермы адсорбции обычно обрабатывают с помощью уравнения, записанного в линейной форме;

, т.е. уравнение типа y = b + ax.

Такая линейная зависимость позволяет графически определить А¥ и К. Зная А¥, можно определить удельную поверхность адсорбента (поверхность единицы массы адсорбента):

,

где А¥ - предельная адсорбция, выражаемая числом молей адсорбата на единицу массы адсорбента;

NA – число Авогадро;

w0 – площадь, занимаемая одной молекулой адсорбата.

1.                Если сà 0, тогда уравнение примет вид:

А=А¥Кс;   ;      А = Кгс,      q =Кс,

т.е. при сà 0 уравнение Ленгмюра переходит в уравнение Генри.

2.                Если сà¥, тогда А = А¥ , А/А¥  = 1. Это случай предельной адсорбции.

3.                Пусть адсорбция идет из смеси компонентов, в этом случае уравнение Ленгмюра записывается следующим образом:

.

Все рассмотренные выше уравнения справедливы для мономолекулярной адсорбции на адсорбенте с энергетически эквивалентными адсорбционными центрами. Однако реальные поверхности этим свойством не обладают. Приближенной к реальности является возможность распределения адсорбционных центров по энергии. Приняв линейное распределение, Темкин использовал формулу уравнения Ленгмюра и получил уравнение для средних степеней заполнения адсорбента.

,

где     - константа, характеризующая линейное распределение;

К0 - константа уравнения Ленгмюра, отвечающая максимальной теплоте адсорбции.

Из уравнения следует, что увеличение парциального давления (из-за увеличения концентрации) одного компонента подавляет адсорбцию другого и тем сильнее, чем больше его адсорбционная константа равновесия. Уравнение часто называют логарифмической изотермой адсорбции. Если принять экспоненциальное распределение центров по поверхности, то в области средних заполнений получается ранее найденное эмпирическим путем уравнение Фрейндлиха:

.

Прологарифмировав, получим    ,

где K, n – постоянные.

Использование уравнения Фрейндлиха в логарифмической форме позволяет определить константу уравнения.

Уравнение Ленгмюра можно использовать только при адсорбции в мономолекулярном слое. Это условие выполняется при хемосорбции, физической адсорбции газов при меньшем давлении и температуре выше критической.

Однако в большинстве случаев мономолекулярный адсорбционный слой не компенсирует полностью избыточную поверхностную энергию и поэтому остается возможность влияния поверхностных сил на второй и т.д. адсорбционные слои. Это реализуется в том случае, когда газы и пары адсорбируются при температуре ниже критической, т.е. образуются полимолекулярные слои на поверхности адсорбента, что можно представить как вынужденную конденсацию (рис. 2.3.1.2 и 2.3.1.3).

В результате этих представлений была выведена следующая формула:

- уравнение полимолекулярной адсорбции БЭТ,

где ;

KL = aжп – константа конденсации пара;

аж - активность вещества в жидкости;

ап - активность вещества в состоянии насыщенного пара;

ап = Рs.

Физический смысл С: характеризует разность энергии Гиббса в процессах чистой адсорбции и конденсации. Это уравнение получило название БЭТ (Бранауэр-Эммет- Теллер).

При р/рs<<1, уравнение БЭТ превращается в уравнение Легмюра, которое при дальнейшем уменьшении давления (Рà 0) переходит в закон Генри:

.

При обработке экспериментальных данных уравнение БЭТ используют в линейной форме (рис. 2.3.1.4):


; ,

таким образом графически находят обе константы уравнения А¥ и С.

კატეგორია: Химия | დაამატა: nukria (27.04.2012)
ნანახია: 513 | რეიტინგი: 0.0/0
სულ კომენტარები: 0
კომენტარის დამატება შეუძლიათ მხოლოდ დარეგისტრირებულ მომხმარებლებს
[ რეგისტრაცია | შესვლა ]
მოგესალმები Гость