Каталог статей

მთავარი » სტატიები » Математика » Вейвлеты

Дискретное вейвлет-преобразование
Дискретное вейвлет-преобразование

Дискретное вейвлет-преобразование (DWT) - реализация вейвлет-преобразования с использованием дискретного набора масштабов и переносов вейвлета, подчиняющихся некоторым определённым правилам. Другими словами, это преобразование раскладывает сигнал на взаимно ортогональный набор вейвлетов, что является основным отличием от непрерывного вейвлет-преобразования (CWT), или его реализации для дискретных временных рядов, иногда называемой непрерывным вейвлет-преобразованием дискретного времени (DT-CWT).

Вейвлет может быть сконструирован из функции масштаба, которая описывает свойства его масштабируемости. Ограничение, что функция масштаба должна быть ортогональна к своим дискретным преобразованиям, подразумевает некоторые математические ограничения на них, которые везде упоминаются, т.е. уравнение гомотетии

где S - фактор масштаба (обычно выбирается как 2). Более того, площадь под функцией должна быть нормализована и функция масштабирования должна быть ортогональна к своим численным переносам, т.е.

После введения некоторых дополнительных условий (поскольку вышеупомянутые ограничения не приводят к единственному решению) мы можем получить результат всех этих уравнений, т.е. конечный набор коэффициентов ak которые определяют функцию масштабирования, а также вейвлет. Вейвлет получается из масштабирующей функции как N где N - чётное целое. набор вейвлетов затем формирует ортонормированный базис, который мы используем для разложения сигнала. Следует отметить, что обычно только несколько коэффициентов ak будут ненулевыми, что упрощает расчёты.

На следующем рисунке показаны некоторые масштабирующие функции и вейвлеты. Наиболее известным семейством ортонормированных вейвлетов явлется семейство Добеши. Её вейвлеты обычно обозначаются числом ненулевых коэффициентов ak, таким образом, мы обычно говорим о вейвлетах Добеши 4, Добеши 6, и т.п. Грубо говоря, с увеличением числа коэффициентов вейвлета функции становятся более гладкими. См. сравнение вейвлетов Добеши 4 и 20 ниже. Другой из упомянутых вейвлетов - простейший вейвлет Хаара, который использует прямоугольный импульс как масштабирующую функцию.

Функция масштабирования Хаара и вейвлет (слева) и их частотные составляющие (справа).

Функция масштабирования Добеши 4 и вейвлет (слева) и их частотные составляющие (справа).

Функция масштабирования Добеши 20 и вейвлет (слева) и их частотные составляющие (справа).

Существует несколько видов реализации алгоритма дискретного вейвлет-преобразования. Самый старый и наиболее известный – алгоритм Малла (пирамидальный). В этом алгоритме два фильтра – сглаживающий и несглаживающий составляются из коэффициентов вейвлета и эти фильтры рекуррентно применяются для получения данных для всех доступных масштабов. Если используется полный набор данных D = 2N и длина сигнала равна L, сначала рассчитываются данные D/2 для масштаба L/2N - 1, затем данные (D/2)/2 для масштаба L/2N - 2, … пока в конце не получится 2 элемента данных для масштаба L/2. результатом работы этого алгоритма будет массив той же длины, что и входной, где данные обычно сортируются от наиболее крупных масштабов к наиболее мелким.

В Gwyddion для расчёта дискретного вейвлет-преобразования используется пирамидальный алгоритм. Дискретное вейвлет-преобразование в двумерном пространстве доступно в модуле DWT.

Дискретное вейвлет-преобразование может использоваться для простого и быстрого удаления шума с зашумлённого сигнала. Если мы возьмём только ограниченное число наиболее высоких коэффициентов спектра дискретного вейвлет-преобразования, и проведём обратное вейвлет-преобразование (с тем же базисом) мы можем получить сигнал более или менее очищенный от шума. Есть несколько способов как выбрать коэффициенты, которые нужно сохранить. В Gwyddion реализованы универсальный порог, адаптивный по масштабу порог [2] и адаптивный по масштабу и пространству порог [3]. Для определения порога в этих методах мы сперва определяем оценку дисперсии шума, заданную

где Yij соответствует всем коэффициентам наиболее высокого поддиапазона масштаба разложения (где, как предполагается, должна присутствовать большая часть шума). Или же дисперсия шума может быть получена независимым путём, например, как дисперсия сигнала АСМ когда сканирование не идёт. Для наиболее высокого поддиапазона частот (универсальный порог) или для каждого поддиапазона (для адаптивного по масштабу порога) или для окружения каждого пикселя в поддиапазоне (для адаптивного по масштабу и пространству порога) дисперсия рассчитывается как


Значение порога считается в конечном виде как


где

Когда порог для заданного масштаба известен, мы можем удалить все коэффициенты меньше значения порога (жесткий порог) или мы можем уменьшит абсолютное значение этих коэффициентов на значение порога (мягкий порог).

Удаление шума DWT доступно в меню Обработка данных → Интегральные преобразования → Удаление шума DWT .

 


კატეგორია: Вейвлеты | დაამატა: nukria (27.04.2012)
ნანახია: 198 | რეიტინგი: 0.0/0
სულ კომენტარები: 0
კომენტარის დამატება შეუძლიათ მხოლოდ დარეგისტრირებულ მომხმარებლებს
[ რეგისტრაცია | შესვლა ]
მოგესალმები Гость