მთავარი » სტატიები » Физика » Метод Зойтендейка |
Задачи с нелинейными ограничениями-неравенствамиТеперь рассмотрим задачу, в которой допустимая область задается системой ограничений-неравенств не обязательно линейных: минимизировать f(х) при условиях gi (х)£0, i=1, ...,m. В теореме формулируются достаточные условия, при которых вектор d является возможным направлением спуска.
ТЕОРЕМА. Рассмотрим задачу минимизации f(х) при условиях gi (х)£0, i=1, ...,m.. Пусть х—допустимая точка, а I—множество индексов активных в этой точке ограничений, т. е. . Предположим, кроме того, что функции f и gi для дифференцируемы в х, а функции gi для непрерывны в этой точке. Если при , то вектор d является возможным направлением спуска. Рис. 6. Совокупность возможных направлений спуска в задаче с нелинейными ограничениями. 1— 1-е ограничение; 2—3-е ограничение; 3—4-е ограничение; 4— 2-е ограничение; 5— возможные направления спуска; 6— линии уровня целевой функции.
Доказательство. Пусть вектор и удовлетворяет неравенствам и при . Для выполняются неравенства , и так как gi непрерывны в точке х, то для достаточно малых . В силу дифференцируемости функций gi при имеем
где при . Так как , то при достаточно малых . Следовательно, при i = 1, . . .,m, т.е. точка допустимая для достаточно малых положительных значений . Аналогично из следует, что для достаточно малых > 0 имеем . Следовательно, вектор и является возможным направлением спуска.
На рис. 6 показана совокупность возможных направлений спуска в точке х. Вектор d, удовлетворяющий равенству , является касательным к множеству в точке х. Поскольку функции gi нелинейны, движение вдоль такого вектора d может привести в недопустимую точку, что вынуждает нас требовать выполнения строгого неравенства .
Чтобы найти вектор d, удовлетворяющий неравенствам для , естественно минимизировать максимум из и для . Обозначим этот максимум через z. Вводя нормирующие ограничения Для каждого j, получим следующую задачу для нахождения направления.
Пусть (z, d)—оптимальное решение этой задачи линейного программирования. Если z<0, то очевидно, что d—возможное направление спуска. Если же z = 0, то, как показано ниже, текущая точка является точкой Ф. Джона.
ТЕОРЕМА.. Рассмотрим задачу минимизации f(х) при условиях gi(х)£0, i = 1,..., m. Пусть х—допустимая точка, а . Рассмотрим следующую задачу нахождения направления:
Точка х является точкой Ф. Джона для исходной задачи тогда и только тогда, когда оптимальное значение целевой функции задачи поиска направления равно нулю. Точка х является точкой Ф. Джона для исходной задачи тогда и только тогда, когда оптимальное значение целевой функции задачи поиска направления равно нулю.
Доказательство. Оптимальное значение целевой функции в сформулированной задаче нахождения направления равно нулю в том и только в том случае, если система неравенств при не имеет решения. По теореме для того, чтобы эта система не имела решения, необходимо и достаточно, чтобы существовали такие числа uo и ui, , что Это и есть условие Ф. Джона.
Алгоритм метода Зойтендейка (случай нелинейных ограничений-неравенств)
Начальный этап. Выбрать начальную точку х1, для которой gi(xi)£0 при i= 1, ..., m. Положить k= 1 и перейти к основному этапу. Основной этап. Шаг 1. Положить и решить следующую задачу:
Пусть (zk, dk) — оптимальное решение. Если zk=0, то остановиться; xk является точкой Ф. Джона. Если zk < 0, то перейти к шагу 2.
Шаг 2. Взять в качестве ^ оптимальное решение следующей задачи одномерной минимизации:
где. Положить . заменить k на k+1 и перейти к шагу 1.
ПРИМЕР. Рассмотрим задачу
Решим эту задачу методом Зойтендейка. Начнем процесс из точки .Отметим, что
Итерация 1
Поиск направления. В точке х1 = (0.00, 0.75)T имеем а множество индексов активных ограничений есть I= {3}. При этом Задача нахождения направления имеет вид Можно легко проверить, используя симплекс-метод, что оптимальным решением этой задачи является вектор
Линейный поиск. Любая точка по направлению d1== (1.00, —1.00)T из точки xi = (0.00, 0.75)T может быть представлена в виде ,а соответствующее ей значение целевой функции равно . Максимальное значение , для которого остается допустимой точкой, равно == 0.414. При этом значении l активным становится ограничение . Значение l получается из решения следующей задачи одномерной минимизации:
минимизировать 6l2—2.5l—3.375 при условии 0£l£0.414 Оптимальное значение равно l1= 0.2083. Следовательно, х2 = (x1 +l1d1) -(0.2083,0.5417)T. Итерация 2 Поиск направления. В точке x2= (0.2083, 0.5417)T имеем (х2)=(—4,2500, —4.2500)T Активных ограничений в этой точке нет, и поэтому задача определения направления имеет вид минимизировать z при условиях —4.25d1—4.25d2—z£0, Оптимальным решением является вектор d2=(1, 1)T, а z2 = -8.50.
Линейный поиск. Можно легко проверить, что максимальное l, при котором точка x2+ld2 допустима, равно lmax == 0.3472. При этом активным становится ограничение . Значение l2 получается минимизацией при условии и, очевидно, равно l2 = 0.3472, так что хз = х2 +l2d2 = (0.5555, 0.8889)T. Итерация 3
Поиск направления. В точке xз= (0,5555, 0.8889)T имеем (хз)=(—3.5558, —3.5554)", а множество индексов активных ограничений есть I ={1}. Задача определения направления имеет вид Оптимальным решением является вектор . Линейный поиск. Максимальное значение l при котором точка xз + ldз допустима, равно lmax = 0,09245. При этом l активным становится ограничение . Значение l3 получается минимизацией при условии 0,09245. Оптимальным решением этой задачи является l3 = 0.09245, так что = (0.6479, 0.8397)T. Итерация 4 Поиск, направления. Для точки х4= (0.6479, 0.8397)T имеем =(— 3.0878, —3.9370)^ а I={2}. Задача определения направления имеет вид
Оптимальным решением этой задачи является вектор d4 = (-0.5171, 1.0000)T и z4=— 2.340. Линейный поиск. Максимальное значение К, для которого точка х4 +ld4 допустима, равно lmах= 0.0343. При этом ограничение становится активным. Значение l4 получается минимизацией f(x4+ ld4) == 3,569l2— 2.340l —6.4681 при условии и равно l4= 0.0343. Следовательно, новой точкой является x5==x4 + l4d4 = (0.6302, 0.8740)T. Значение целевой функции в этой точке равно -6.5443, т. е. сравняю со значением —6.5590 в оптимальной точке (0.658872, 0.808226)T . В табл. 2 приведены результаты вычислений на первых четырех итерациях метода. На рис. 7 показан процесс поиска оптимума.
Рис 7 | ||||||||||||||||||||||||||||||||||
ნანახია: 486 | კომენტარი: 1 | |
სულ კომენტარები: 0 | |
სექციის კატეგორიები | |||||||
---|---|---|---|---|---|---|---|
|
შესვლის ფორმა |
---|
ძებნა |
---|
მინი-ჩეთი |
---|
საიტის მეგობრები |
---|
სტატისტიკა |
---|