Каталог статей

მთავარი » სტატიები » Математика » Нестандартный анализ

Пример неархимедовой числовой системы

Пример неархимедовой числовой системы

До сих пор речь шла о гипердействительной прямой (а точнее, любом неархимедовом расширении упорядоченного поля действительных чисел). Возникает вопрос – существует ли хотя бы одно такое распшрение. Построим такое расширение.

Основная идея этого построения может быть описана в одной фразе так: у нас нет объектов, но есть имена для них; так объявим же имена объектами! Эта (часто применяемая в математической логике) идея конкретизируется в нашем случае следующим образом.

Мы знаем, что в нашем (пока еще не построенном и неизвестно существующем ли) расширении должно быть хотя бы одно бесконечно малое положительное гипердействительное число. Обозначим его через e. Поскольку гипердействительные числа можно умножать друг на друга (и, в частности, на действительные числа), то наряду с e в нашем расширении будут и числа 2e, 0,5e и вообще все числа вида ae, где а – произвольное стандартное действительное число. Более того, число e можно умножать и на себя, поэтому в нашем расширении будут иметься e2, e3, 2e2, Зe2+2e+1, ... и вообще все гипердействительные числа вида Р(e), где P – многочлен со стандартными действительными коэффициентами.

Множество чисел такого вида замкнуто относительно сложения, вычитания и умножения. Это значит, что, складывая, вычитая или перемножая два числа такого вида, мы вновь получим число такого же вида. Но для гипердействительных чисел определено еще и деление. Поэтому в расширении будут и числа вида Р(e)/Q(e), где P и Q – многочлены со стандартными действительными коэффициентами. После этого мы получаем множество гипердействптельных чисел, замкнутое относительно всех арифметических операций: складывая, вычитая, умножая или деля две дроби указанного вида по обычным правилам, получаем дробь такого же вида.

Таким образом, не имея пока искомого расширения, мы уже смогли назвать некоторые его элементы, дать им имена. Этими именами являются записи вида P(e)/Q(e), где e – некоторый символ. Более того, мы можем судить и о том, какая из двух записей обозначает большее число. В самом деле, достаточно уметь определять, обозначает ли данная запись положительное, отрицательное или нулевое число (поскольку а > b тогда и только тогда, когда a-b>0). Знак дроби можно определить по знакам числителя и знаменателя, следовательно достаточно уметь определять знак P(e), где Р – многочлен. Это делается так. Легко видеть, что знак величины a0+a1e+… совпадает со знаком a0, если a0<>0. В самом деле, добавка a1e+… бесконечно мала, а складывая положительное (отрицательное) число с бесконечно малым, мы получаем положительное (соответственно отрицательное) число. Возможен, однако, случай a0=0. Будем считать для определенности, что e – положительное бесконечно малое. Вынесем из нашего многочлена e в наибольшей возможной степени, т. е. представим его в виде ek(ak+ak+1e+…), где ak уже отлично от 0. Знак всего выражения определяется знаком выражения в скобках (при умножении на положительное число знак не меняется), а знак выражения в скобках (как мы уже видели) определяется знаком числа ak..

По существу, мы уже построили искомое неархимедово расширение. Нужно лишь посмотреть на наши рассуждения с другой позиции. До сих пор выражения P(e)/Q(e) рассматривались нами как имена «настоящих» гипердействительных чисел (взятых неизвестно откуда). А теперь они станут самими гипердействительными числами. Рассмотрим формальные выражения вида P(e)/Q(e), где e – некоторый символ, P, Q – многочлены с действительными коэффициентами, причем Q<>0. Провозглашая, что объектами, а в данном случае гипердействительными числами, мы объявим имена, а в данном случае выражения, или записи вида P(e)/Q(e), мы были не совсем точны. Дело в том, что, очевидно, две различные записи могут выражать одно и то же число (иными словами, быть двумя различными именами одного и того же числа): так, например, естественно считать, что запись (e2-1)/(e-1) выражает то же самое число, что и (e+1)/1.

Будем называть два выражения P(e)/Q(e) и R(e)/S(e) эквивалентными, если P(e)*S(e)=R(e)*Q(e) (равенство понимается как равенство многочленов, т. е. как равенство коэффициентов при одинаковых степенях). Легко проверить, что это определение действительно задает отношение эквивалентности, разбивающее все выражения вида P(e)/Q(e) на классы. Эти классы мы и будем называть гипердействительными числами. Сложение, вычитание, умножение и деление гипердействительных чисел определяются по обычным правилам. Так, например, если a – класс, содержащий P/Q, а b – класс, содержащий R/S, то их суммой называется класс, содержащий (PS+RQ)/SQ, а произведением — класс, содержащий PR/QS. Легко проверить, что это определение корректно, т. е. не зависит от выбора элементов P/Q в классе a и R/S в классе b (в результате получаются разные представители одного и того же класса). Аналогичным образом можно определить взятие обратного и противоположного, нуль и единицу. Нетрудно проверить, что все аксиомы поля при этом будут выполнены. Изложенная конструкция хорошо известна в алгебре: построенное поле называется полем рациональных функций с коэффициентами в R и обозначается R(e).

Осталось определить только порядок, указав, как выбрать из двух различных гипердействительных чисел (т. е. из двух различных классов эквивалентных дробей) большее. Для этого нужно вычесть одно число из другого и определить, будет ли разность (отличная от нуля, поскольку числа различны) положительной или отрицательной. Чтобы определить, будет ли отличное от нуля число a положительным или отрицательным, возьмем его представитель P/Q. Здесь P, Q отличны от 0 (Q отлично от нуля по определению, Р – потому что, по нашему предположению, разность не равна 0). Вынесем в числителе и в знаменателе e в наибольшей возможной степени:

P=ek(ak+ak+1e+…), Q=el(bl+bl+1e+…), ak, bl отличны от 0.

Число a будет положительным, если ak, bl имеют одинаковые знаки, и отрицательным, если они имеют разные знаки.

Построенное упорядоченное поле R(e) можно рассматривать как расширение поля R: достаточно отождествить действительное число х с классом эквивалентных дробей, содержащим дробь x/1. Осталось лишь показать, что аксиома Архимеда не выполняется, предъявив бесконечно малый элемент. Этим элементом будет, конечно, e (точнее, класс, содержащий e/1). В самом деле, e+e+ ... +e <1, так как разность 1-ne положительна (знак определяется свободным членном, а 1 > 0).

Искомое расширение построено.

კატეგორია: Нестандартный анализ | დაამატა: nukria (27.04.2012)
ნანახია: 377 | რეიტინგი: 0.0/0
სულ კომენტარები: 0
კომენტარის დამატება შეუძლიათ მხოლოდ დარეგისტრირებულ მომხმარებლებს
[ რეგისტრაცია | შესვლა ]
მოგესალმები Гость